電気電子物理工学実験皿マイクロプロセッサ

課題: アッカーマン関数のプログラム実装

アッカーマン関数とは

- 2変数関数
- ・再帰的な定義(定義に自分自身を用いる)

	関数値	条件
定義1	ack(x,y) = y + 1	x = 0
	ack(x,y) = ack(x-1,1)	$x \neq 0, y = 0$
定義3	ack(x,y) = ack(x - 1, ack(x, y - 1))	$x \neq 0, y \neq 0$

- 再帰的に値を計算する場合、小さなx, yでも爆発的に計算量が増える
- 非再帰的な計算方法も考えられるが、本実験では、 サブルーチンの再帰的な呼び出しの実習として、 アッカーマン関数を再帰的に計算するプログラム を作成する
 - 発展課題として、非再帰的な計算プログラムを作成して みるとよい

プログラムの考え方

- ACK関数をサブルーチンとして作成
- 2つの変数x, yを入力する必要あり⇒レジスタACとBを利用・・・どちらをx、どちらをyにする?
- 関数値を出力する必要あり
- ・定義3では内側のACK関数値が外側のACK関数の入力y (2番目の変数)となる
 - ⇒入力yと関数値を同じレジスタに保存すれば、自動的に関数値の受け渡しが完了する
 - ⇒プログラムの簡単化(例えばxをAC、yと関数値をBに)
- サブルーチンの実行は、CALL、RETURN(RTN)を利用
- 戻りアドレスを保存するためスタックが必要となるが、レジスタXをスタックポインタとして利用する
- CALL,RTN命令追加⇒ホームページ「ヒント」参照

プログラムの考え方

スタックポインタ初期化

 $AC \leftarrow x$

 $B \leftarrow y$

CALL ACK

HLT

関数値	条件
ack(x,y) = y + 1	x = 0
ack(x, y) = ack(x - 1, 1)	$x \neq 0, y = 0$
ack(x,y) = ack(x-1,ack(x,y-1))	$x \neq 0, y \neq 0$

ACK: if(AC == 0) then

 $B \leftarrow B+1$

1 return

else if (B == 0) then

 $AC \leftarrow AC-1$

 $B \leftarrow 1$

call ACK

(2) return

else

B ← B-1

call ACK

 $AC \leftarrow AC-1$

call ACK

(3) return end if

注意:

ここでACの値を変更(-1)しているが、②で復帰した後に元の ACの値が必要となる可能性あり

②の復帰前にAC値を戻せばよい

例えばスタックへのpushとpopを利用して 値の保存と復元が可能

※他にも値を保存する必要のある個所はないか?

その他注意

- スタックポインタ(レジスタX)を適切に初期化せよ
- x,yはあまり大きな値は試す必要なし
 - プログラムが正しいことが確認できれば十分
- 関数値例はwikipedia等を参照